Search results for "Geometric function theory"

showing 5 items of 5 documents

Sobolev homeomorphic extensions onto John domains

2020

Abstract Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W 1 , 2 -extension but not even a homeomorphic W 1 , 1 -extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p 2 . John disks, being one sided quasidisks, are of fundamental importance in Geometric Function The…

Pure mathematicsMathematics::Dynamical SystemsGeometric function theory010102 general mathematicsMathematics::General TopologyBoundary (topology)Extension (predicate logic)Mathematics::Geometric Topology01 natural sciencesUnit diskDomain (mathematical analysis)HomeomorphismSobolev spaceUnit circle0103 physical sciences010307 mathematical physics0101 mathematicsAnalysisMathematicsJournal of Functional Analysis
researchProduct

GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs)

2002

Nonlinear systemGeometric function theoryGeneral MathematicsApplied mathematicsMathematicsBulletin of the London Mathematical Society
researchProduct

MAPPINGS OF FINITE DISTORTION: $L^n \log^{\alpha} L$ -INTEGRABILITY

2003

Recently, systematic studies of mappings of finite distortion have emerged as a key area in geometric function theory. The connection with deformations of elastic bodies and regularity of energy minimizers in the theory of nonlinear elasticity is perhaps a primary motivation for such studies, but there are many other applications as well, particularly in holomorphic dynamics and also in the study of first order degenerate elliptic systems, for instance the Beltrami systems we consider here.

Distortion (mathematics)Pure mathematicsGeometric function theoryElliptic systemsGeneral MathematicsDegenerate energy levelsHolomorphic functionTopologyFirst orderNonlinear elasticityConnection (mathematics)MathematicsJournal of the London Mathematical Society
researchProduct

Cone conditions and quasiconformal mappings

1988

Let f be a quasiconformal mapping of the open unit ball B n = {x ∈ R n : | x | < l× in euclidean n-space R n onto a bounded domain D in that space. For dimension n= 2 the literature of geometric function theory abounds in results that correlate distinctive geometric properties of the domain D with special behavior, be it qualitative or quantitative, on the part of f or its inverse. There is a more modest, albeit growing, body of work that attempts to duplicate in dimensions three and above, where far fewer analytical tools are at a researcher’s disposal, some of the successes achieved in the plane along such lines. In this paper we contribute to that higher dimensional theory some observati…

Quasiconformal mappingPure mathematicsGeometric measure theoryGeometric function theoryBounded functionHölder conditionConformal mapBall (mathematics)Modulus of continuityMathematics
researchProduct

Algebraic Curves and Riemann Surfaces in Matlab

2010

In the previous chapter, a detailed description of the algorithms for the ‘algcurves’ package in Maple was presented. As discussed there, the package is able to handle general algebraic curves with coefficients given as exact arithmetic expressions, a restriction due to the use of exact integer arithmetic. Coefficients in terms of floating point numbers, i.e., the representation of decimal numbers of finite length on a computer, can in principle be handled, but the floating point numbers have to be converted to rational numbers. This can lead to technical difficulties in practice. One also faces limitations if one wants to study families of Riemann surfaces, where the coefficients in the al…

Moduli of algebraic curvesAlgebraRiemann–Hurwitz formulaRiemann hypothesissymbols.namesakeGeometric function theoryRiemann surfaceComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONAlgebraic surfacesymbolsRiemann's differential equationBranch pointMathematics
researchProduct